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Abstract

Several papers that have recently appeared in the literature have shown the potential offered by certain
mathematical tools (wavelets) for detecting damage in systems such as transversally vibrating beams.
However, although the applications shown by different authors suggest that the tools show promise, the
literature lacks a clear and concise collocation of the wavelets with respect to these previous methods that
show similar (if not identical in certain circumstances) performances. In this paper, the continuous wavelet
transforms ðcwtsÞ are discussed and compared, from a theoretical and numerical point of view, with those
methods known as differentiator operators. Such differentiator operators adopted as filters are also able
(similarly to the cwts) to reduce unwanted high frequency noise. Therefore, literature concerning
differentiator filters in the digital signal processing area is investigated and several digital filters, known and
modified, are analyzed and compared with the cwts in the presence of Gaussian noise. The theoretical
aspects are discussed in both the non-transformed and Fourier transformed domain. This study results in
an attempt to provide an elucidation on the effectiveness and the need to use the considered methods
(differentiator filters and/or cwts) for detecting damage in transversally vibrating beams.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Damage detection based on using changes in modal data or in more general vibrational data,
has become one of the most attractive research topics in recent years [1–3]. The relevant literature
is increasing because of the undoubted advantages offered by these techniques compared with
existing diagnostic techniques (acoustic emission, eddy current, radiographic, etc.). The latter can
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only detect damage in locations established a priori. However, there are still several unsolved
questions. Moreover, a well-established technique has still not been recognized as being suitable
for several real cases by researchers and practitioners.
This work is related with those methods that try to detect the existence and location of damage

(referred to here as the identification process), by processing the dynamical shapes that are strictly
related to the system. This statement leads to the investigation into integrity of a system by
avoiding the involvement of a relevant numerical model. The analyst, who should only process a
measured signal containing relevant information concerning the damage, has to tackle the
identification problem from a clearly better perspective. The so-called ‘dynamical shapes’ should
correspond to a signal defined in the space (mode shapes, dynamic or static deflections, etc.),
which is supposed to contain spatial information regarding the identification process. In this study
the ‘dynamical shapes’ will correspond to the mode shapes of certain damaged transversally
vibrating beams.
With respect to this particular structural element considered, the first significant attempts could

be historically attributed to Yuen [4] and Pandey et al. [5]. These authors reported that derivatives
of displacements should be considered as useful tools leading to diagnostic information. Indeed,
the numerical simulations carried out by Yuen [4] showed that significant changes can occur in the
slopes of displacements in the proximity of the damaged locations. On the other hand, Pandey
et al. [5] discovered that a systematic detection of damaged locations in beams could be obtained
by looking at certain characteristic peaks associated with the curvature mode shape changes
between intact and damaged states. Refs. [4,5] reached such conclusions by using numerical FE-
models. A recent numerical investigation conducted by Abdo and Hori [6] also compliments the
concept suggested in Ref. [5]. However, the successes obtained by the numerical simulations of
Pandey et al. [5] were not always successfully supported by subsequent experimental tests. For
example, Chance et al. [7] reported that curvature changes could be masked by the derivative
operations in the presence of noisy data. However, other investigators (e.g., Ref. [8]), in other
experimental circumstances, found the mode shapes curvature changes to be useful damage
detection indicators.
The idea of Pandey et al. [5] was subsequently adopted by Hoerst and Ratcliffe [9] and Ratcliffe

and Bagaria [10] who aimed at detecting damaged conditions by avoiding any baseline
information of the undamaged structure (a fact generally present in practice). These authors
presented a method (gapped smoothing), which essentially aimed at extracting certain peaks,
characteristic of local damage, by processing the curvature mode shape only in its damaged
condition.
The method [9] was also applied to detect open cracks in damaged beams by Gentile and

Messina [11] in conjunction with all the derivatives up to the third order. However, the noise still
significantly affected the success of the processing techniques mentioned.
Based on all the investigations mentioned previously, there is evidence for stating that the

derivatives should be considered useful tools for identifying local damage. However, for the
classical derivative operations a careful implementation has to be retained which is important in
the presence of noisy data [7,11].
In addition to the derivatives the literature is currently showing a parallel channel of process-

ing techniques through wavelet transforms. As far as the interests of this study are concerned,
Refs. [12–14] are of interest. Wang and Deng [12] and Quek et al. [13], investigated the possibility
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of identifying the presence and the location of localized damage on transversally vibrating beams
by using wavelet analysis. Wang and Deng [12] used a discrete Haar wavelet transform [15,16] to
identify the location of damage in beams and plates. Moreover, Quek et al. [13] compared the
performances of two different analyzing wavelets: Haar and the complex Gabor wavelets. Hong
et al. [14] used the continuous wavelet transform to estimate the damage location and extent by
using the Lipschitz exponent [16–18]. The investigation by Hong et al. [14] was based on the
‘mexican hat’ wavelet having two vanishing moments. This choice was justified for reasons related
to the Lipschitz exponent to quantify the damage extent.
In spite of all the successes mentioned by the previous studies the investigations were conducted

without considering a theoretical justification aimed at correlating existing techniques with
wavelets. Such a correlation should be considered to be of fundamental importance for support-
ing the reasons that should lead the investigators to use wavelets rather than derivatives
which are more easily applicable and universally known. In this respect, the investigation by
Gentile and Messina [19] deserves attention. Indeed, Gentile and Messina pointed out how, to a
certain extent, certain continuous wavelet transforms were equivalent to the derivatives when the
related dilation parameters approach zero. This equivalence can be identified between the number
of vanishing moments and the order of differentiation. Numerical and analytical comparisons
showed how the exact correspondence between cwts and derivatives operations could effectively
occur in practical calculations. However, a substantial difference between cwts and differentiators
based on finite difference schemes was revealed in the presence of noise. Indeed, Gentile and
Messina [19] showed that cwts could reduce the noise (amplified through a classical
differentiation). The price for this performance is that the lowest scale cannot be considered
the best choice to identify the location of the damage, as is usually believed. For this reason,
Gentile and Messina [19] pointed out that a trade-off should be adopted to preserve diagnostic
details and to reduce the effect of noise through the continuous wavelet transforms when applied
on discrete vibrational data.
Ref. [19], however, left some non-negligible questions unsolved, whose elucidation consti-

tutes the main objective of this study. In particular, the digital signal processing area (e.g.,
Refs. [20–22]) suggests the possibility of tackling the differentiation of noisy data through
appropriately designed differentiator digital filters. In this respect the literature lacks an
appropriate comparison aimed at illustrating whether these digital filters are as effective as the
continuous wavelet transform. Therefore, in this study the continuous wavelet transforms are
adopted by using fixed scales in order to preserve the comparison with digital differentiator filters
and, therefore, the representation through ridges (e.g., Refs. [18,19]), that could reveal the
presence of local damage, is not taken into account. At fixed scales, it is shown that Gaussian
cwts behave in the same way as low-pass differentiator filters. Therefore, in this paper a
theoretical presentation of cwts and higher order differentiator filters is carried out. The
relevant digital filters, which are being dealt with, belong to the class of non-recursive filters.
This choice corresponds to the convolution operated through the cwts; when applied to discrete
data, which can be seen as a non-recursive operation. Numerical and theoretical investiga-
tions are conducted in order to identify the reasons that should encourage an analyst
to use cwts instead of differentiator filters or vice versa. Three different differentiator filters
are adopted in this study which belong to a number of technical proposals made over the last
20 years.
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2. Theory and applications of digital differentiator non-recursive filters

The theory illustrated here is extracted from the linear variable invariant (LVI) systems theory
and is adapted to the subject investigated. The Fourier domain will play a significant role.
However, for brevity’s sake, the relevant mathematical derivations and related theorems are taken
from the specialized literature (e.g., Refs. [21–25]).

2.1. Continuous and discrete signals

Let yðxÞ be a signal (the dynamical shape) that is defined in its x-physical domain. Eq. (1) gives
its representation in the so-called Fourier-domain:

Y ðoÞ ¼ FðyðxÞÞ ¼
Z þN

�N

yðxÞe�iox dx; ð1Þ

where Y ðoÞ is the contribution of each complex eigenvector eiox through which yðxÞ can be re-
composed by

yðxÞ ¼
1

2p

Z þN

�N

Y ðoÞeiox do: ð2Þ

The variable oAR corresponds to the angular frequency, which has physical dimensions
rad=dim½x�; dim½x� in this work will correspond to length or samples in the following discrete
version. In any case, o always constitutes the variable in the Fourier-domain.
Eqs. (1,2) are well known as Fourier transform and inverse Fourier transform respectively. A

number of important relationships hold for the Fourier transform, the most relevant of which is
given in the following equation:

F
dmyðxÞ
dxm

� �
¼ ðioÞmY ðoÞ ¼ HðoÞY ðoÞ: ð3Þ

Based on Eq. (3) the differentiator operator can be seen as the application of a high-pass
amplifying filter to the signal in the Fourier-domain. Fig. 1 illustrates the amplitude of this ideal
filter only for the positive frequencies belonging to ½0 1� and with respect to the first four
derivatives. Fig. 1 also illustrates corresponding low-pass differentiator filters, which aim at
reducing high frequency noise. In this latter respect, it is stressed that any design depends on the
intrinsic characteristics of the noise and that here all the following considerations will refer to the
case of Gaussian noise whose higher frequencies contributions correspond to unwanted noise.
As is known, the filtering acts in the variable space through the convolution

rðxÞ ¼
Z þN

�N

yðzÞhðx � zÞ dz ¼
Z þN

�N

hðzÞyðx � zÞ dz ¼ hðxÞ�yðxÞ ð4Þ

and through a classical product in the Fourier domain (right-hand term of Eq. (3)).
The reduction of unwanted high frequency noise can be obtained by designing a differentiator

filter whose frequency response function corresponds to the curve ðioÞm that is constrained
to descend with a certain dropout at the cut-off frequency oc: This creates a so-called low-pass
differentiator filter (Fig. 1) whose numerical performance depends on how much the ideal
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filter is approximated from the designed filter as well as on the energy of the signal present in the
pass band.
There is substantial discrete technology to believe that a processing technique has to be applied

on discrete vibrational data rather than on continuous functions [26]. When the dynamical shape
is defined on N discrete values as yðxnÞ for n ¼ 0;y;N � 1; it is still possible to represent such a
discrete sequence of numbers in the Fourier-domain. The counterpart of Eqs. (1,2) are Eqs. (5,6)
respectively:

%YðoÞ ¼
XþN

n¼�N

yðxnÞe�ixno; ð5Þ

yðxnÞ ¼
1

os

Z os=2

�os=2

%YðoÞeixno do; ð6Þ

where %YðoÞ is a periodic ð %YðoÞ ¼ %Yðoþ osÞÞ Hermitian continuous function defined through real
discrete data. The term os corresponds to the sampling frequency and establishes the effective
observable frequency band (½0;os=2� or ½0; p� if xn ¼ n). It is recalled here that %YðoÞ can undergo
aliasing and is related to the analytical Fourier transform Y ðoÞ (Eq. (1)) through the following
relationship (for a band-limited signal):

%YðoÞ ¼
os

2p
Y ðoÞ: ð7Þ

Reasonable choices, connected with sampling frequency and the frequency content of the
analyzed signals, will be mainly responsible for reducing the aliasing in this study. Moreover,
because %YðoÞ differs (Eq. (7)) from Y ðoÞ by a coefficient ðos=2pÞ it will be indicated as Fourier
transform or discrete Fourier transform.
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Fig. 1. Differentiator filters ðioÞm: Ideal (—) and low-pass differentiator filters ( ).
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The convolution of discrete signals operated through LVI systems corresponds to the following
equation:

rðnÞ ¼
XþN

n¼�N

hðn � kÞyðkÞ ¼
XþN

n¼�N

hðkÞyðn � kÞ ¼ hðnÞ�yðnÞ: ð8Þ

Through Eqs. (5–8) and their related mathematical properties it is possible to realize filters
ðhðnÞÞ that are able to perform the desired operations (low pass differentiator filters in this context)
on the numerical sequences yðnÞ:
Finally, since in practice yðnÞ is constituted by a finite sequence of N numbers and as this study

deals with a processing technique through finite impulse response filters (FIR) the summations
concerning Eqs. (5,8) have to be adapted over a finite sequence of numbers. Therefore only the N

central values resulting from convolution (8) are taken into consideration. This will force the
length of the filtered signal ðrðnÞÞ to coincide with the length of the original signal ðyðnÞÞ:
In the following three sub-sections, Eqs. (5–8) lead to the presentation of the differentiator

filters considered in this investigation. The following three FIR-filters were chosen in an attempt
to represent chronologically the technical proposals suggested over the last 20 years from the
digital signal processing area. They have been considered to be basic in order to show the
advantages or disadvantages that can be encountered during their use, at least with respect to an
analysis through cwts:
It is stressed that in the problem being dealt with, the differentiator filters should be able to

conduct a derivation with good accuracy mainly at the lowest frequencies. Indeed, in a
generalization dealing with a real signal in the samples domain, the term ‘‘frequency’’ refers to the
discrete space ðnÞ where mode shapes are low-frequency signals with respect to the simulated high-
frequency Gaussian noise.

2.2. Differentiator filters based on Fourier series method in conjunction with windows (FSW)

This technique can be considered conceptually straightforward as well as being basic in the
sense that other methods use part of the same underlying theory. Traces of this method can be
found in Refs. [21,22]. The design of the filter starts by assigning the desired frequency response
function of the filter ð %HðoÞdÞ; which, for a low-pass differentiator filter corresponds, in ½�p;p�; to

%HðoÞd ¼
ðioÞm for jojooc;

0 elsewhere:

(
ð9Þ

Due to the periodicity mentioned (Section 2.1), %HðoÞd is expanded in a Fourier series to obtain
its related discrete impulse response function hðnÞ: Eq. (10) corresponds to Eq. (6) adapted in the
domain ½�oc;oc� where the desired frequency response function (10) is different from zero.

hðnÞ ¼
1

2p

Z oc

�oc

ðioÞmeino do: ð10Þ

The integration of Eq. (10), provides Eqs. (11,12) in a closed non-causal form of the filters for
the first two derivatives ðhðnÞm refers to the mth derivative). The integrations were also considered
for m ¼ 3; 4 but for brevity’s sake only the first two (11,12) were considered. In accordance with a
filter constituted by Nf taps and a sequence n counted from 0 to Nf � 1; each occurrence Kn in the
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following equations should be substituted by n � ðNf � 1Þ=2: This would result in causal filters for
which the central value ððNf � 1Þ=2Þ would belong or would not belong to the discrete sequence
hðnÞ if Nf is odd or even respectively:

hðnÞ1 ¼
Knoc cosð KnocÞ � sinð KnocÞ

p Kn2
for Kna0;

0 for Kn ¼ 0;

8><
>: ð11Þ

hðnÞ2 ¼
�
2 Knoc cosð KnocÞ þ ð Kn2o2

c � 2Þ sinð KnocÞ

p Kn3
for Kna0;

�o3
c=ð3pÞ for Kn ¼ 0:

8><
>: ð12Þ

Due to the fact that the expansion in Fourier series is based on infinite terms, Eqs. (11,12)
should be truncated to obtain a FIR filter. The relevant literature suggests that the truncation
should be carried out by weighting the sequence hðnÞ through an appropriate window wðnÞ [21,22]
in order to face the typical Gibbs phenomenon. In spite of the fact that several windows were used
during the simulations, only the case regarding Hamming’s window (Eq. (13)) is reported here.
This choice is related with the fact that a substantial difference in this application was not revealed
by the use of the different windows:

wðnÞ ¼
0:54� 0:46 cos

2pn

Nf � 1

� �
with 0pnpNf � 1;

0 elsewhere:

8><
>: ð13Þ

Fig. 2 shows the magnitude of frequency response functions ðj %HðoÞjÞ (Eq. (14)) related to the
first four derivatives ðm ¼ 1; 2; 3; 4Þ: The evaluation was made by designing filters, at a fixed
cutting frequency ðoc ¼ p=2Þ with 51 points ðNf Þ: The higher Nf is, the higher the accuracy of the
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designed filter. However, it should take into account that high Nf means long delays and a high
loss of data at the ends. Therefore, in the application, the minimum number of taps ðNf Þ should be
preferred:

%HðoÞm ¼
XNf �1

n¼0

hðnÞmwðnÞe�ino: ð14Þ

Fig. 2 seems to illustrate a good approximation of the respective ideal filters. However, a
perusal of Fig. 2 reveals inaccurate behaviour of the designed filter at the lowest frequencies (these
are the main concern in the present application). Such behaviour is revealed by Fig. 3 that displays
the logarithmic quantities of Fig. 2 in the observable frequency band ½0;p�; for a different number
of points ðNf ¼ 128; 1024Þ and for one cutting frequency ð0:15pÞ: For a better visual inspection
each pair of curves (i.e., desired and designed filter) has been shifted downward by an amount
equal to m � 1: The higher the slope of curves is, the higher is the correspondent order of
differentiation.
The inaccuracy mentioned is not generally observed for the filter concerning the first derivative.

Indeed, good accuracy can be observed independently from the cutting frequency and number of
points. Conversely, the higher order filters have a certain influence at lowest frequencies and this
increases with order of differentiation and does not disappear even for a high number of points
(1024). Fig. 3 would suggest cascading the first derivative to obtain a higher differentiation order;
however, this practice should only be applied whilst being aware that the length of the filter (i.e.,
hðnÞ2 ¼ hðnÞ1�hðnÞ1) is approximately doubled. Moreover, the practice of cascading first order
differentiator filters does not generally eliminate all the inaccuracies when low values of cutting
frequencies are used, as was numerically verified.
Figs. 4 and 5 illustrate the second derivative of the sequence yðnÞ ¼ sinðpn=ðN � 1ÞÞ through

two different designed filters. In these figures both the lower graphs illustrate the characteristics of
the designed filters and the relevant ideal ones. Figs. 4(c) and 5(c) also illustrate a normalized
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Fourier transform of the analyzed signal ðjY ðoÞj=jY ðoÞjmaxÞ: This latter graph is used to provide
evidence of the frequency content of the signal and assists the interpretation of the simulations.
The graphs on the top (Figs. 4(a) and 5(a)) compare the exact second derivative with the filtered
numerical one and also show the convolving filter. These filters have length Nf in scale with the
abscissa of the leading graph whilst the magnitude does not respect any scale. This arrangement
will be considered in all the subsequent graphs.
The filter adopted in Fig. 4 is particularly inaccurate at lowest frequencies. On the other hand,

the main frequency content of the analyzed signal (Fig. 4(c)) is mainly located in the frequency
range where the filter is inaccurate. This is not clearly shown by the linear representation of
Fig. 4(b) that is too optimistic to judge the quality of the filter. As a result, the performance of the
numerical derivative results is unacceptable. Conversely, Fig. 5 illustrates a filter whose behaviour
is much better than that of Fig. 4. The designs, carried out using the present method, did not
follow an immediate methodic way, rather they followed a heuristic process. Such a heuristic
method was also supported by checking the accuracy of the filter in the pass-band of interest.
Those aspects should be considered to be clear disadvantages with respect to a method that could
offer a methodic design of the filter.
With respect to the accuracy of the numerical derivatives, there are reasons to raise the question

if the present context requires such high accuracy. Indeed, the context being dealt with regards the
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possibility of detecting damage through a peak in differentiated dynamical shapes. The accuracy
could, therefore, be considered as being marginal for an analyst who is only interested in looking
for abnormal peaks located on a smooth function. However, a few tests (not reported here for
brevity’s sake) showed that the inaccuracy could sometimes overestimate the smooth part of
the signal and underestimate those peaks that should be preserved as the most interesting part of
the signal. Therefore, the accuracy involved in a differentiator filter should also be generally
preferred in this context.

2.3. Differentiator filters based on a weighted least squares technique (WLS)

The present technique (WLS) has been identified in open literature as an attempt to reduce the
problems occurring at the lowest frequencies with filters designed through the FSW method.
Other design techniques were identified. However, the WLS technique was retained as the most
suitable method in the context.
In particular, Rahenkamp and Kumar [27] present what is possibly the first systematic attempt

to design higher order differentiating FIR filters. Their work was based on carrying out
modifications to McClellan et al. [28] FIR filter design Fortran program to extend its capabilities
to approximate higher order differentiating FIR filters. Subsequently, Pei and Shyu [29] reported
that such a proposed method often led to very large deviations or failed to converge. Pei and Shyu
[29] proposed a design technique (eigenfilter approach) based on computing an eigenvector
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resulting from the constraint imposed on the desired amplitude response. The constraint consists
of imposing the response of a designed filter to coincide with its related ideal response at an
established arbitrary frequency. Later, Pei and Shyu [30] also developed relevant analytic closed
form solutions. It is also of interest to mention Refs. [31,32]. These methods are accurate around
the frequency where magnitude and derivative constraints are imposed. A method which tries to
globally approximate the ideal filter in the frequency range of interest was proposed by Sunder
and Ramachandran [33]. The comparisons carried out by Sunder and Ramachandran showed an
accuracy which was comparable to the eigenfilter method [29] without needing to fix an arbitrary
frequency to establish the accuracy of the filter. Indeed, the method consists of minimizing the
squared error between the ideal response filter and the designed filter over the frequency range of
interest. Mollova [34] and Mollova and Unbehauen [35] have also proposed closed analytical
formulations for least squares design of digital differentiators.
The previous methods were mainly concerned with full band or quasi-full band differentiator

filters. As far as the interests of this study are concerned, Sunder and Ramachandran [33, Section
VII] discussed an extension of their design technique to other types of frequency selective filters. It
is the extension suggested by Sunder and Ramachandran that has been adopted in this work. A
slight modification to the extension suggested by Sunder and Ramachandran has been used to
tackle problems with the FSW method at lowest frequencies. The following description only
concerns the case of even order differentiations through filters with an odd number of points. The
remaining three cases were also developed. However, for brevity’s sake they were not reported
here.
For a non-recursive even order ðmÞ differentiator filter the impulse response function hðnÞ is

symmetric with respect to its centre [22]. Therefore, starting from a non-causal representation, the
complex expression (15) can be easily handled to obtain its relevant equivalent form (16):

%HðoÞm ¼
XðN�1Þ=2

n¼�ðN�1Þ=2

hðnÞme
�ino; ð15Þ

%HðoÞm ¼
XðN�1Þ=2

n¼0

aðnÞ cosðnoÞ; ð16Þ

where the taps of the filters ðhðnÞÞ are related to the coefficients aðnÞ of Eq. (16) by simple relations:
aðnÞ ¼ 2hðnÞ for na0 and að0Þ ¼ hð0Þ: The desired differentiator filter in the frequency domain is
illustrated in Eq. (9). Based on Eqs. (9,16) the design technique consists of determining the
coefficients aðnÞ that minimize the following error function:

EðaÞ ¼ a1

Z o1

0

ðð�1Þm=2om � %HðoÞmÞ
2 doþ a2

Z oc

o1

ðð�1Þm=2om � %HðoÞmÞ
2 do

þ b
Z p

oc

ðð�1Þm=2om � %HðoÞmÞ
2 do; ð17Þ

where the coefficients ða1; a2;bÞ are the weights of the bands delimited by ð0;o1;oc; pÞ: In total,
Eq. (17) is based on three bands: the pass-bands ½0;o1�; ½o1;oc� and the stop-band ½oc;p�: Eq. (17)
contains, compared to the suggestion given by Sunder and Ramachandran [33], an additional
degree of freedom that is the additional weight in the band ½0;o1�: This slight modification was
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adopted for two reasons: (i) for tackling the inaccuracy that a global method (as it was also the
FSW method) undergoes at lowest frequencies; (ii) this is a generalization containing the
suggestion of Sunder and Ramachandran [33], which can be obtained simply by settling a1 ¼
a2 ¼ a:
Therefore, by settling the partial derivatives of the error function to zero ð@E=@aðnÞ ¼ 0Þ; the

coefficients aðnÞ can be obtained by solving the following system of linear equations.

a1

Z o1

0

c 	 cT doþ a2

Z oc

o1

c 	 cT doþ b
Z p

oc

c 	 cT do

 �

	 a

¼ a1

Z o1

0

ð�1Þm=2omc doþ a2

Z oc

o1

ð�1Þm=2omc do
� �

; ð18Þ

where cT ¼ ð1; cosðoÞ; cosð2oÞ;y; cosððN � 1Þo=2ÞÞ and aT ¼ ða0; a1; a2;y; aðN�1Þ=2Þ: Once m has
been fixed, the elements of Eqs. (18) can be expressed through analytical closed forms and it only
remains to solve a system of linear equations.
Fig. 6 illustrates, similar to Figs. 4 and 5, the design of a filter that is able to perform the second

derivative of the discrete signal already mentioned using only 9 points. Similar trials were carried
out with the FSW method but the design of a filter having a similar short length and a comparable
accuracy was unsuccessful. In any case, it is stressed here that the designs were, also in this
method, carried out on a heuristic base that was further aggravated by the choice of several
parameters.
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Fig. 6. Second derivative of the signal yðnÞ ¼ sinðpn=ðN � 1ÞÞ ðN ¼ 256Þ through a filter hðnÞ2 ðNf ¼ 9Þ designed by

weighted least squares technique (o1 ¼ 0:04; oc ¼ p=2; a1 ¼ 1:0E+12, a2 ¼ 1:0; b ¼ 1000:0). Keys (a, b, c) referred to

Fig. 4.
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2.4. Lanczos’s differentiator filters

It was well known (see Lanczos [20]) that a derivative, if simply considered as the limit of a finite
difference, is of little value if sampled functions are not free from errors. For this reason, Lanczos
resorted to a least squares method for solving the problem of first order differentiation of noisy
data. In this regard, Lanczos obtained a very simple filter consisting of the following closed form:

hðnÞ1 ¼
3n

2N2
h þ 3N2

h þ Nh

; n ¼ þNh;y;�Nh; ð19Þ

where Nh corresponds to half-length of the filter, being Nf ¼ 2Nh þ 1: Note that Eq. (19) has been
reported here in its non-causal representation to be applied in a convolving operation (8). Lanczos
obtained an equivalent form of Eq. (19) by fitting the assigned data through a local parabola and
estimating the first derivative with an equivalent equation to Eq. (19). The concept can be
generalized with higher order fitting polynomials to get higher order derivatives. However, filter
(19) was considered by this author as a trade-off between computational efficiency and filtering
performances when it was compared to the previous differentiator filters.
Fig. 7 illustrates the design of second order differentiator filters applied to the same discrete

sequence ðyðnÞÞ used in the previous tests (Figs. 4–6). The designs, in the case of Lanczos’s filter,
were carried out only by changing (still heuristically) the number of points because Eq. (19) does
not offer a direct access to the cutting frequency. This latter was observed through a visual
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Fig. 4.
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inspection of the transfer function. The comparison between Figs. 4, 5 and 6 respectively shows
that the second order differentiator filters perform well.

3. Wavelet transforms as differentiator filters: the case of Gaussian wavelets (GW)

In this section the capability of certain continuous wavelet transforms for performing filtered
differentiation is elucidated. This capability was partially observed through numerical tests by
Gentile and Messina [19] within the framework of dynamical shapes corrupted by Gaussian noise.
However, a theoretical correlation between the cwts and differentiator operators was not shown.
Here this is made through the transformed Fourier domain.
A wavelet cðxÞ is [18] a finite energy function having a zero average:Z þN

�N

cðxÞ dx ¼ 0 ð20Þ

being cðxÞ the wavelet mother from which the analyzing wavelets can be obtained by dilations
(s: dilation parameter; sARþ) and translations ( %x: translation parameter; %xAR):

cðxÞ %x;s ¼
1ffiffi

s
p c

x � %x

s

� �
ð21Þ

by also weighting the wavelet mother with s�1=2: The wavelet mother can be a real or complex
function. However, in this context, apart from initial general considerations, real Gaussian
wavelets are used. A continuous wavelet transform of a signal yðxÞ corresponds to the following
definition:

yð %xÞw ¼
Z þN

�N

yðxÞ
1ffiffi

s
p c

x � %x

s

� �
dx: ð22Þ

The superscript w will distinguish the wavelet transform of yðxÞ from the signal itself. Any
capital letter will be used to indicate the relevant Fourier transform.
The wavelet transform (22) can be considered in the light of a convolution product (i.e., Eq. (4))

between the original signal yðxÞ and the following convolving filter,

cðx; sÞ ¼
1ffiffi

s
p c �

x

s

� �
ð23Þ

which corresponds to the wavelet mother cðxÞ dilated (through s), weighted (through 1=
ffiffi
s

p
) and

turned over (through �x). Therefore, based on the classical Fourier transforms properties,
Eq. (22) can be translated into

Y ðo; sÞw ¼ Y ðoÞ 	Cð�soÞ
ffiffi
s

p
: ð24Þ

Eq. (24) corresponds to the Fourier transform of the signal filtered through Cð�soÞ
ffiffi
s

p
: A

careful examination of the effect of this filter on the signal (i.e., through Eq. (24)) is worthy of
attention.
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Consider a wavelet mother cðxÞ with a fast decay [18] that is defined by the mth derivative of a
function yðxÞ having a fast decay, using

cðxÞ ¼ ð�1Þm
dmyðxÞ
dxm

: ð25Þ

This is a sufficient and necessary condition establishing that the wavelet cðxÞ is characterized by
m vanishing moments [18]. Condition (26) also establishes that cðxÞ has no more than m vanishing
moments: Z þN

�N

yðxÞ dx ¼ Ka0: ð26Þ

Therefore, based on the wavelets characterised by Eqs. (25,26), the following interesting
equation can be proved:

Cð�soÞ
ffiffi
s

p
¼ smþ1=2Yð�soÞðioÞm: ð27Þ

Indeed, if the Fourier transform of the dilated (through s), scaled (through 1=
ffiffi
s

p
) and turned

over (through �x) version of Eq. (25) is considered:

F c �
x

s

� � 1ffiffi
s

p
 !

¼ F sm�1=2 d
myð�x=sÞ
dxm

� �
: ð28Þ

Eq. (3) together with the known properties of Fourier transforms leads to Eq. (27). A careful
examination of Eq. (27) is now possible once the second term of Eq. (27) replaces the filter
Cð�s oÞ

ffiffi
s

p
in Eq. (24). After this substitution is carried out, Eq. (24) transforms into

Y ðo; sÞw ¼ ðioÞmY ðoÞsmþ1=2Yð�soÞ: ð29Þ

Eq. (29) illustrates, in the Fourier transformed domain, that if the dilation parameter ðsÞ is fixed
to a certain value and Yð�soÞ is assumed to be a constant, then the wavelet transform of a signal
ðyðxÞÞ would correspond to a proportional quantity of the mth derivative (with the wavelet mother
having m vanishing moments). However, the function Yð�soÞ is far from being a constant. Its
shape is the main reason for letting a wavelet transform correspond to a derivative or not. In
particular, if Yð�soÞ behaved as a low pass filter, therefore having an approximately constant
value in the pass band of interest, the wavelet transform (see Eq. (29)) would naturally correspond
to a differentiator filter in the same band.
In general it is possible to prove that Yð�soÞ has similar characteristics to that of a low-pass

filter. Firstly, condition (30) should be taken into account.

YðoÞo¼0 ¼ K ¼
Z þN

�N

yðxÞ dxa0: ð30Þ

Moreover, it should also be considered that, because the behaviour of a wavelet is similar to
that of a band pass filter, the magnitude jCðoÞj is a function with fast decay. Consequently, based
on the Fourier transform of Eq. (25) there is evidence that jYðoÞj is also a function with a fast
decay. Therefore, jYðoÞj behaves as a function whose value at o ¼ 0 is different from zero and
tends to become negligible for o-N:
Due to the fact that this study is involved in the use of Gaussian wavelets, it is interesting to

focus attention on the characteristic curve of YðoÞ correspondent to the Gaussian wavelets.
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A family of Gaussian wavelets can be obtained by applying Eq. (28) to the following modified
Gaussian functions ðyðxÞÞ [19] which are based on a normal distribution having zero mean and
unitary equivalent standard deviation:

yðxÞ1 ¼ � e�x2
ffiffiffiffiffiffiffiffi
2=p4

p
; K1 ¼ �

ffiffiffiffiffiffi
2p4

p
; yðxÞ2 ¼ �e�x2

ffiffiffiffiffiffiffiffi
2=p4

p
ffiffiffi
3

p ; K2 ¼ �

ffiffiffiffiffiffi
2p4

p
ffiffiffi
3

p ;

yðxÞ3 ¼ e�x2

ffiffiffiffiffiffiffiffi
2=p4

p
ffiffiffiffiffi
15

p ; K3 ¼

ffiffiffiffiffiffi
2p4

p
ffiffiffiffiffi
15

p ; yðxÞ4 ¼ e�x2

ffiffiffiffiffiffiffiffi
2=p4

p
ffiffiffiffiffiffiffiffi
105

p ; K4 ¼

ffiffiffiffiffiffi
2p4

p
ffiffiffiffiffiffiffiffi
105

p ð31Þ

to which the following Fourier transform corresponds:

YðoÞm ¼ Kme
�o2=4: ð32Þ

Eq. (32) is obviously a low-pass filter (with zero-phase). Therefore, Eqs. (29,32) yield Eq. (33),
which illustrates how the result of the convolution operated through Eq. (22) (i.e., wavelet
transform) corresponds to a differentiation operated by a low-pass differentiator filter

Y ðo; sÞw

smþ1=2Km

¼ ðioÞme�o2s2=4Y ðoÞ: ð33Þ

Obviously, it should be considered that this latter statement rigorously holds if the term of
proportionality Kmsmþ1=2 is taken into account.
The maximum value of this low-pass differentiator filter in the transformed Fourier domain

could conventionally correspond to the cutting frequency of the filter ðocÞ: Based on Eq. (33) it
becomes clear that such a maximum value can be evaluated by differentiating ome�ðosÞ2=4 with
respect to o and by solving the equation equated to zero in o: As a result, the expression of the
cutting frequency can be evaluated in a closed analytical form as shown in the following:

oðsÞc ¼
ffiffiffiffiffiffiffi
2m

p
=s; ð34Þ

where m still represents the order of differentiation of the mth Gaussian wavelet adopted
(Gausm).
Fig. 8 illustrates the differentiator filter ðjYðsoÞomjÞ with different dilation parameters

compared to the relevant ideal differential operator jðioÞmj: In particular Fig. 8b illustrates the
excellent accuracy shown by the differentiator filter at lowest frequencies when the dilation
parameter corresponds to s ¼ 6: Fig. 8b undergoes the identical shifts of Fig. 3 for a greater
clarity.
From Fig. 8 and the previous discussions the following conclusions can be drawn:

(i) To a certain extent Mallat’s equation (35) can be generalized to the more practical context of
differentiator filters where finite dilation parameters are of concern. The accuracy of the filter
depends on the behaviour of the generating function ðyðxÞÞ in the Fourier transformed domain:

lim
s-0

yðx; sÞw

smþ1=2
¼ Km

dmyðxÞ
dxm

: ð35Þ

(ii) The generating function ðyðxÞÞ of the mth Gaussian wavelet behaves as a linear low-pass
filter. The dilation parameter can select the cutting frequency and the wavelet transform (22)
naturally behaves as a low-pass differentiator filter.
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(iii) The design of a digital low-pass differentiator filter can be avoided, at least in digital form,
when a Gaussian wavelet transform is used. Indeed, only the passage from continuous to discrete
sequences is required in order to make digital differentiator filters available.

3.1. Applying continuous wavelet transforms to discrete data

With respect to property (iii) Eqs. (23,33) are our main concern. The low-pass differentiator
filter illustrated in Eq. (33) corresponds to the following impulse response function:

hðxÞm ¼
1

Kmsmþ1=2

cð�x=sÞmffiffi
s

p ð36Þ

whose convolution on the signal yðxÞ results in a low-pass filtered differentiation with a cutting
frequency ðocÞ depending on the dilation parameter ðsÞ through Eq. (34). The expressions of the
related wavelets cðxÞ that are used here can be found in Ref. [19] for m ¼ 1; 2; 3; 4:
The passage from continuous signals to discrete ones follows the underlying theory illustrated

in the previous Sections 2.1 and 2.2. However certain aspects need to be highlighted before
applying cwts on discrete data.
In the frame of discrete signals the variable x (length) and the dilation parameter s will be

substituted by n (samples) and a respectively thus yielding filters (37). This brings a certain
generality to the sampled variable (space for dynamical shapes, etc.):

hðnÞm ¼
1

Kmamþ1=2

cð�n=aÞmffiffiffi
a

p : ð37Þ
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A similar substitution can be made in Eq. (34) to obtain an analytical cutting frequency of
Gausm wavelets depending on dilation parameter a: Moreover, although the Gaussian wavelets
do not have a compact support here, for practical reasons, the support of the wavelet mother will
be considered compact in ½�5; 5� for m ¼ 1; 2; 3; 4:
The discrete filter represented in Eq. (37) has interesting differences compared to the filters

illustrated in Section 2.
Through Gaussian cwts; the analyst must only settle the dilation parameter or equivalently,

through Eq. (34), the cutting frequency. The number of sampling points depends on the dilation
parameter as: Nf ¼ 10a þ 1: Table 1 lists both cutting frequency and length of filter (37) for
several values of dilation parameter ðaÞ: An examination of Table 1 reveals how the higher that the
dilation parameter is, the higher the length of the filter is, and the narrower the frequency pass
band is.
In the FSW method cutting frequencies and number of points constitute two degrees of

freedom for the design procedure. The design procedure of the WLS method is guided by
six degrees of freedom ðo1;oc; a1; a2;b;Nf Þ: Finally, Lanczos’s filter has only the number
of points as design parameters, because the cutting frequency depends on such a number of
points.
Fig. 9 illustrates second order differentiator filters applied to the same discrete sequence ðyðnÞÞ

used in the previous tests (Figs. 4–7). As has just been mentioned, this filter was not designed but it
was directly applied (ready to use) after selecting a dilation parameter a ¼ 2 to which the cutting
frequency (Table 1) oc ¼ 1 corresponds. The comparison between Fig. 9 and previous relevant
figures shows that filter (37) is extremely accurate even though no heuristic work was done to
obtain it. Conversely, a number of trials is always needed in all methods mentioned in Section 2 in
order to design appropriate FIR filters.
There is a minimum allowable value for the dilation parameter a that should be used with filter

(37) when cwts are applied to discrete data. Such a limit is related to the shape of the Fourier
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Table 1

Cutting frequencies, oc (Eq. (34)), corresponding to Gaussian wavelets with different vanishing moments m

a m Length ðNf Þ

1 2 3 4

1 1.41 2.00 2.45 2.83 11

2 0.707 1.00 1.22 1.41 21

3 0.471 0.667 0.816 0.943 31

4 0.354 0.500 0.612 0.707 41

5 0.283 0.400 0.490 0.566 51

6 0.236 0.333 0.408 0.471 61

7 0.202 0.286 0.350 0.404 71

8 0.177 0.250 0.306 0.354 81

9 0.157 0.222 0.272 0.314 91

10 0.141 0.200 0.245 0.283 101

11 0.129 0.182 0.223 0.257 111

12 0.118 0.167 0.204 0.236 121
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transform of hðnÞ (i.e., %HðoÞ) in an inter-relationship with its analytical counterpart. This can be
seen through Fig. 9. In particular, Fig. 9b shows a Fourier transform of the filter with a certain
dropout, which cannot be directly designed by a parameter. As the dilation parameter decreases,
cutting frequency increases (Eq. (34); Table 1) and the transfer function ð %HðoÞÞ approaches the
maximum allowable threshold p: This trend can cause non-negligible aliasing, forcing the discrete
transfer function (i.e., %HðoÞ) to deviate significantly from its theoretical counterpart ðHðoÞÞ:
A graphical examination of the discrete Fourier transforms of filters (37) can suggest that an
amin ¼ 2 is reasonably prudent to reduce the aliasing of %HðoÞ in the observable frequency band
½0;p� for m ¼ 1; 2; 3; 4:

4. Identifying damage through cwts and non-recursive differentiator filters

In this section the signal to be analyzed by digital differentiator filters and cwts is obtained by
sampling equally the displacements at discrete points of a transversally vibrating beam (Fig. 10).
The same Fig. 10 illustrates the cracked beam that will be the main object of investigation here.
The damaged vibrating beam is modelled as a segmented beam whose analytical model was
presented in Ref. [11] and is referred to here as a classical Euler–Bernoulli beam model that
neglects the rotatory inertia. The damage is simulated with an equivalent sub-beam which has a
different Young’s module. In particular, Young’s module is obtained through Eq. (38) that was
obtained through a slightly modified model presented by Bovsunovsky and Matveev [36], as
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Fig. 9. Second derivative of the signal yðnÞ ¼ sinðpn=ðN � 1ÞÞ ðN ¼ 256Þ through a filter hðnÞ2 ðNf ¼ 21Þ based on

wavelet Gaus2 (oc ¼ 1:0 and a ¼ 2). Keys (a, b, c) referred to Fig. 4.
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reported in Gentile and Messina [11]:

Eeq

E
¼ ð1� gÞ3 þ

4:41

12

ð1� gÞ
d=h

½ð1� gÞ6 � 3ð1� gÞ2 þ 2�

 ��1

: ð38Þ

Based on Fig. 10, g corresponds to the ratio a=h ¼ 0:5 and d is representative of the halfwidth of
the notch ðd ¼ 1 mmÞ: The analytical model simulates the notch as symmetrically placed around
the barycentric axis of the undamaged beam and located at the coordinate xc:
As far as the simulated damaged scenario is concerned Table 2 has been taken into account.
Mode shapes in damaged and undamaged conditions are not shown for brevity’s sake. Here it is

recalled that several authors have shown how a visual inspection of the mentioned dynamical
shape does not clearly indicate the place of local damage (e.g., Refs. [4,5,11]). This justifies the
need to resort to opportune processing of discrete data that make the damage evident through
significant peaks located on smooth dynamical shapes.
Any simulation regarding uncontaminated data will not be considered. Indeed, the previous

sections and the previous investigations [4,5,11,19] clearly illustrate that differentiator filters and cwts
are certainly and efficiently able to locate local damage through the digital processing of clean data.

4.1. Data contaminated by Gaussian noise

This section illustrates the potential of cwts and digital differentiator filters when applied to
discrete data contaminated by noise. In the following simulations the noise has been simulated by
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Table 2

First three natural frequencies (Hz) and percentage deviations for an undamaged and damaged FF-beam (refer to

Fig. 16)

No. Undamaged state xc ¼ 0:5 dev% xc ¼ 0:667 dev% xc ¼ 0:85 dev%

1 75.38 72.58 3.7 73.64 2.3 75.20 0.24

2 207.8 207.8 0.0 201.7 2.9 205.4 1.2

3 407.3 396.1 2.7 406.4 0.22 397.4 2.4

L = 600

0

a = 2.5

Young's modulus: 223 GPa

40

density: 8000 kg/m^3

h = 5

dir. vibrations side view

d

all dimensions in mm

top view
x

N

xc

Notch

zoom damage

0

Fig. 10. Geometric, material characteristics and notations used for the beam model under investigation.
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adding a Gaussian noise nðxÞ to the true signal yðxÞt:

yðxÞ ¼ yðxÞt þ nðxÞm;s ð39Þ

m and s being the mean and the standard deviation of the normal distribution respectively. The
parameters ðm;sÞ adopted in the simulations have been chosen by following Ref. [19]. In
particular, for comparison purposes an identical seed generating the random sequence simulating
the Gaussian noise was retained.
Fig. 11 reports the processing of the first mode shape of an FF damaged beam (refer to Fig. 10,

Table 2) through different filters (depicted in each relevant graph). Fig. 11(a) illustrates the
performance obtained by Gaus2 cwts (second derivative) which has a dilation parameter a ¼ 9:
This latter condition establishes a filter having Nf ¼ 91 points ð10a þ 1Þ with a cutting frequency
oc ¼ 0:22: Therefore, the remaining filters were designed in order to have a cutting frequency ðocÞ
approximately equal to 0.2 and a minimum number of points that were able to preserve the
accuracy of the design and reduce the loss of data at the ends. In the case of Lanczos’s filter the
minimum number of points coincides with the number of points that ensures a cutting frequency
of 0.2.
All the designs of the differentiator filters were carried out by trial and error through changing

the designing parameters that are summarized in Table 3 for each filter. The quality of the design
was checked by a visual inspection of the relevant %HðoÞ in both linear and logarithmic scales.
The FSW method was not able to identify an accurate second order differentiator filter ðm ¼ 2Þ

by a oc ¼ 0:2 and Nf ¼ 91 points due to the inaccuracies at low frequencies. However, it was
possible to design a filter hðnÞ2 by cascading a first order ðhðnÞ1Þ differentiator filter. The cascading
procedure provided an hðnÞ2 with a oc (meant as the maximum of %HðoÞ) close to 0.2 and Nf ¼ 81
points. Apart from a clear equivalence that Fig. 11 shows between this filter and the filter obtained
through the GW method, a significantly better performance cannot be clearly detected. It is
interesting to observe the similarity between the convolving filter regarding the FSW method and
the filter corresponding to the GW method.
The design of Lanczos’s filter, obtained by cascading one first order differentiator filter, was

straightforward. Only 45 points were able to provide a oc at about 0.18 with a performance
clearly comparable with previously mentioned filters. Again, the filter was obtained by cascading
two first order differentiator filters.
The design through the WLS method was felt to be the most laborious one. After selecting the

six parameters needed (Table 3) the filter consisted of 46 points with a oc established at 0.2. The
loss of data at the ends, similarly to Lanczos’s filter, was slightly worse than that of the GW and
FSW method.
It should be said that the design procedures for all the mentioned filters (excluding wavelet

based filters) showed an increasing difficulty when lower cutting frequencies were required.
Conversely the cwt based on Gaussian wavelets does not undergo an appreciable difference for
any order of differentiation ðm ¼ 1; 2; 3; 4Þ at lower cutting frequencies (higher dilation parameter
a). On the other hand, the FIR filters discussed here (FSW, WLS, L) and others available in the
literature have the advantage that they can be designed as full band or quasi-full band
differentiators, whilst the cwts based on Gaussian wavelets undergo a higher limit in the
observable frequency band because of the minimum allowable value of the dilation parameter
discussed in Section 3.
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Figs. 12 and 13 illustrate a comparison similar to that shown in Fig. 11; the notch is located at
xc=L ¼ 0:667 and 0.85 respectively. In both of the figures the most sensitive modes are analyzed.
Those modes were selected through the relative changes of the respective natural frequencies listed
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Fig. 11. Processing of the first mode shape of an FF damaged beam (refer to Fig. 10) through different filters. Noise

added to the mode shape: Gaussian, m ¼ 0; s ¼ 0:2% of the maximum amplitude of the mode shape. Crack at

xc ¼ xc=L ¼ 0:5 (refer to Table 2); N ¼ 512: [(a) GW, Gaus2, oc ¼ ð2mÞ1=2=a; a ¼ 9; Nf ¼ 91; (b) FSW, by hðnÞ1�hðnÞ1;
oc ¼ 0:2; Nf ¼ 81; (c) L, by hðnÞ1�hðnÞ1; oc ¼ 0:18 and Nf ¼ 45; (d) WLS, by hðnÞ2; o1 ¼ 0:02; oc ¼ 0:2; a1 ¼ 1:0Eþ10;
a2 ¼ 1:0; b ¼ 100:0; Nf ¼ 46].
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in Table 2. As is clear from Figs. 12 and 13 similar conclusions to those from Fig. 11 can be
drawn.
In addition, a global examination of Figs. 11–13 would suggest that the differentiator filters

based on the FSW, L, WLS methods are able to realize a differentiation which is smoother than
the GW method in the region where there is no damage. This has to be considered an advantage
because it makes the identification of abnormal peaks (damage) clearer. However, it should also
be considered that the cutting frequencies mentioned in all the methods discussed are not
equivalent, as well as taking into account that the GW method used a slightly higher cutting
frequency than that adopted for the other methods. This latter observation can be observed in
Fig. 14 where the GW method was implemented by using higher dilation parameters that
performed better in terms of smoothness but showing a slightly increasing boundary effect.

5. Conclusion

A theoretical and numerical solution for certain mathematical tools ðcwtsÞ has been presented
dealing with the identification of local damage occurring in transversally vibrating (or statically
deformed) beams. Numerical simulations accounting for free or noisy data have also supported
such a theoretical solution.
It has been theoretically shown how certain continuous wavelet transforms applied to discrete

data can consist of particular differentiator FIR filters.
Several FIR differentiator filters have been adopted in this study for a comparison with cwts:

Such differentiator filters have been chosen in an attempt to represent the technical proposals
suggested over the last 20 years in the area of digital signal processing. However, this attempt
should not be considered a review of all the existing digital differentiator filters. Rather, this
investigation has been carried out to clarify the difference between cwts; based on Gaussian
wavelets, compared to existing techniques.
Gaussian based cwts can be considered superior to the adopted non-recursive differentiator

filters in terms of simplicity. Indeed, the theoretical part has showed how the analyzed cwts do not
require any design because they are naturally compact differentiator filters. Conversely, the
analyzed filters needed a non-negligible amount of heuristic work to be appropriately designed.
Only the simplicity of Lanczos’s filter has been felt to be comparable to the simplicity of the cwts:
The simulations have also shown that in certain circumstances the differentiator filters can offer

a valid alternative in terms of efficiency and length.
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Table 3

Designing parameters of the discussed FIR differentiator filters

No. Name Acronym Designing parameters

1 Fourier series and windows FSWa Nf ; oc

2 Weighted least squares WLS Nf ; oc; o1; a1; a2; b
3 Lanczos L Nf

4 cwts through Gaussian wavelets GW a

aBased on Hamming’s window.
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In any case the present study has shown that derivatives and cwts have very similar performance
and cannot be considered two distinguished and completely different mathematical tools.
Further questions remain to be explained especially within the framework of the existing

wavelets that could be adopted to identify local damage by processing dynamical shapes.
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Fig. 12. Processing of the second mode shape of an FF damaged beam (refer to Fig. 10) through different filters. Noise

added to the mode shape: Gaussian, m ¼ 0; s ¼ 0:2% of the maximum amplitude of the mode shape. Crack at

xc ¼ xc=L ¼ 0:667 (refer to Table 2); N ¼ 512: Keys (a, b, c, d) referred to Fig. 11.

A. Messina / Journal of Sound and Vibration 272 (2004) 385–412408



Finally, apart from the valuable theoretical solutions and numerical comparisons made, this
work constitutes, in its relevant field, the first attempt to process derivatives in order to identify
local damage by taking into account a processing technique aimed at reducing the instability of
derivatives of noisy data.
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Fig. 13. Processing of the third mode shape of an FF damaged beam (refer to Fig. 10) through different filters. Noise

added to the mode shape: Gaussian, m ¼ 0; s ¼ 0:2% of the maximum amplitude of the mode shape. Crack at

xc ¼ xc=L ¼ 0:85 (refer to Table 2); N ¼ 512: Keys (a, b, c, d) referred to Fig. 11.
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